A Posteriori Error Estimates for Parabolic Variational Inequalities

نویسندگان

  • Yves Achdou
  • Frédéric Hecht
  • David Pommier
چکیده

We study a posteriori error estimates in the energy norm for some parabolic obstacle problems discretized with a Euler implicit time scheme combined with a finite element spatial approximation. We discuss the reliability and efficiency of the error indicators, as well as their localization properties. Apart from the obstacle resolution, the error indicators vanish in the so-called full contact set. The case when the obstacle is piecewise affine is studied before the general case. Numerical examples are given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Posteriori Error Estimates for Elliptic Variational Inequalities

We derive hierarchical a posteriori error estimates for elliptic variational inequalities. The evaluation amounts to the solution of corresponding scalar local subproblems. We derive some upper bounds for the e ectivity rates and the numerical properties are illustrated by typical examples.

متن کامل

Another view for a posteriori error estimates for variational inequalities of the second kind

In this paper, we give another view to understand a posteriori error analysis for finite element solutions of elliptic variational inequalities of the second kind. This point of view makes it simpler to derive reliable error estimators in solving variational inequalities of the second kind from the theory for related linear variational equations. Reliable residual-based and gradient recovery-ba...

متن کامل

Duality based a posteriori error estimates for higher order variational inequalities with power growth functionals

We consider variational inequalities of higher order with p-growth potentials over a domain in the plane by the way including the obstacle problem for a plate with power hardening law. Using duality methods we prove a posteriori error estimates of functional type for the difference of the exact solution and any admissible comparision function.

متن کامل

Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2008